Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

نویسندگان

  • A. Smirnov
  • J. I. Beltrán
  • T. Rodriguez-Suarez
  • C. Pecharromán
  • M. C. Muñoz
  • J. S. Moya
  • J. F. Bartolomé
چکیده

Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage Assessment in Glass Fiber-Epoxy Matrix Composite under High Velocity Impact of Ice

This study investigated the influence of nanoclay on the impact damage resistance of glass fiber-epoxy composites under high velocity ice impact loading. Addition of 0.5 wt. % nanoclay into epoxy was shown to improve damage resistance compared to composite plates having no nanoclay platelet. The glass fiber-epoxy composites containing nanoclay brought about substantial improvement in ice impact...

متن کامل

Corrosion Resistance Enhancement of AZ91 Magnesium Alloy Using Ni-P Interlayer and Electrophoretic Deposited 3YSZ Coating

The zirconia stabilized by 3mol % Y2O3 (3YSZ) was applied onto the surface of the magnesium alloy AZ91D using electrophoretic deposition (EPD) from a non- aqueous solution. A Ni-P interlayer between the substrate and YSZ coating was also prepared by electroless plating. Finally, coatings were heat treated in control atmosphere at 400 °C. The preparation, microstructure and corrosion resistance ...

متن کامل

Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses.

The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a...

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

Plasticity 4 nduced Fatigue Damage in Ceria - Stabil

Current studies on the fatigue lifetime of ceramics are mostly focused on the relation between the stress amplitude (or maximum stress) and cycles to failure. For a more compliant and plastic ceramic which has a pronounced nonlinear stress-strain relation, the role of plastic strain in the fatigue damage is investigated for the first time in this study using a 12 mol% Ce-TZP. By testing at diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017